Index

00 c	1
C^0 function, 385	accelerometer, 601
C^{∞} function, 385	accessibility (of a roadmap), 251
C^{∞} manifold, see smooth manifold	accessible system, 870, 909
C^{∞} structure, see smooth structure	accumulation point, 129
C^k function, 385	Ackerman function, 303, 304
GL(n), 145	action history, 400, 566
K-step information-feedback plan, 568	action sequence, 802
L_1 metric, see Manhattan metric	action trajectory, 400, 788
L_2 metric, see Euclidean metric	active localization problem, 642
L_{∞} metric, 187	active-passive decomposition, 343
L_p metric, 187–188	actuators, 793
L_p norm, 188	Adams methods, 815
SE(n), see special Euclidean group	adding integrators to a model, 742–744
\mathcal{C} , see configuration space	adjoint transition equation, 877
C_{obs} , see obstacle region, in the C-space	adjoint variables, 779, 875
X_{obs} , see obstacle region, in the state	admissible configurations, 334
space	affine space, 170
X_{ric} , see obstacle region, in the state	affine-in-control system, see affine non-
space	linear control system
ϵ -goodness, 240	AGVs, see automated guided vehicles
\mathcal{I}_{hist} , see history information space	airport terminal, 376
\mathcal{I}_{ndet} , see nondeterministic information	algebraic primitive, 87, 88, 130, 164–166
space	algebraic Riccati equation, 874
\mathcal{I}_{prob} , see probabilistic information space	algebraic set, 87
k-cell, 267	algebraic variety, see variety
k-neighborhood, 221	alive states, 33, 55, 56, 427
(t,m,s)-nets, 208	Allen wrench, 701
(t,s)-sequences, 208	Alpha Puzzle, 6
1-complex, 133	alphabet, 586
1-neighborhood, 221, 380	Amato, 6
2-neighborhood, 221	ambient isotopy, 350
3D triangles, 90–91	ambient space, 350
	analytic function, 383
A* algorithm, 37, 223, 811	angular momentum, see moment of mo-
Abelian group, see commutative group	mentum
acceleration vector, 408	angular velocity, 601, 727, 729, 756, 757,
acceleration-based control, 408–409	

annihilator, 897	on a probabilistic I-space, 638–639
antipodal points, 138	path-constrained, 852–853
approximate cell decomposition, 246	running time, 46
approximate cover, 413–415	under differential constraints, 839–
approximate optimal motion planning,	841
359-360	with average cost-per-stage, 527
approximation algorithm, 826–827	with discounted cost, 525–526
Ariadne's Clew algorithm, 227	with nature and continuous spaces,
arrangement, 307	551-552
Asimo, 14	with nondeterministic uncertainty, 508–
assembly planning, 321–322	514
asteroids game, 137	with probabilistic uncertainty, 510–
asymptotic convergence to a goal, 400	514
asymptotic solution plan, 400	bad bracket, 910
asymptotic stability, 863–864	Balkcom-Mason curves, 886–888
atan2, 99	Balkcom-Mason drive, 887
atlas, see smooth structure	Balkcom-Mason metric, 888
automated farming, 354	bang-bang approach, 853–855
automated guided vehicles, 325 automotive assembly, 6	Barraquand-Latombe nonholonomic plan-
autonomous differential equations, 387	ner, 828–832
average cost-per-stage model, 522, 524	base point (on a manifold), 895
average dispersion, 246	base point of a path, 142
averaging methods, 921	basis, 382
axioms of rationality, 481–482	of open sets, 130
axis-aligned bounding box, 211	Basu-Pollack-Roy roadmap algorithm, 298
ans angrea sourang son, 2 11	Battle of the Sexes, 471
B-splines, 91	Battleship game, 626–627
backprojection, 427, 503–505, 840–841,	Bayes' rule, 443, 458, 578, 653
852	Bayesian classifier, 456–458
in preimage planning, 696–700	naive, 457
backward action space, 40	behavioral strategies, 622
backward P. Hall coordinates, 914, 916	behaviors, see motion primitives
backward reachable set, 801	best-first search, 38–39
backward search, 39–40, 219, 377, 696,	bidirectional search, 40–41, 71, 227, 367, 638, 801, 819, 820, 827, 831, 835
699, 703	
with backprojections, 518–519	balanced, 235–236
backward state transition equation, 40,	for sampling-based planning, 220 bijective sensor, 562
50, 53	bilinear programming, 473
backward system simulator, 816	binding constraints, 63
backward value iteration, 45–48 for reinforcement learning, 534–535	bitangent line, 262
for sequential games, 546–548	bitangent ray, 675
on a nondeterministic I-space, 637–	bitmap, 91–92
638	black-box simulators, 815–816
000	STAGE SOM SHITHIUNGES, OLO OLO

Blum and Furst, 64	card-counting strategies, 630
Blum and Kozen, 660, 662	Carnot-Caratheodory metric, 811
body density, 753	Cartesian product, 135
body frame, 94, 176, 178, 352, 366, 754,	carton folding, 347–350
758–760	causal links, 63
bond angle, 111	CBHD formula, 913
bond length, 111	cell decomposition, 251, 264–280, 650,
Borel sets, 192	690
boundary grid point, 221	
boundary of a set, 129	under differential constraints, 828 center of mass, 753
boundary point, 129	Central Limit Theorem, 199
boundary representation, 81	
boundary sensors, 601–602	chain of integrators, 738–739
bounded set, 132	chained-form system, 906, 920
bounded-acceleration model, 409	change of coordinates, 391–393
bounded-velocity model, 409	chart, see coordinate neighborhood
Boustrophedon decomposition, 354–357	chasing a gap, 677
Brachistochrone curve, 762	Chazelle, 250
bracket, 904	Chen-Fliess series, 913–914
breadth-first search, 35	Chen-Fliess-Sussman equation, 914–916
bridge-test sampling, 243–244	chi-square test, 200
broad-phase collision detection, 210	Chow-Rashevskii theorem, 908
Brockett, 741, 917, 919	Christoffel symbol, 770, 771
Brockett's condition, 864	Church-Turing thesis, 19
Brockett's system, see nonholonomic in-	classification rule, 456
tegrator	classifier, 455–458
bug algorithms, 667–673	cleared region, 688
bug trap, 219	closed kinematic chains, 118, 167–180
Bug1 strategy, 668–669	motion planning for, 337–347
Bug2 strategy, 669–670	closed set, 128
BVP, see two-point boundary value prob-	closed system (in mechanics), 746–747
lem	ciosed-loop
	control law, 793
C-space, see configuration space	plan, 370
caffeine, 17	see also feedback plan
calculus of variations, 440, 762–769, 922	closure of a set, 129, 195
Campbell-Baker-Hausdorff-Dynkin formu	llaļosure space, 339
913	codistribution, 897
candidate Lyapunov function, 866	coherent models, 212
Candorcet paradox, 482	Collins decomposition, see cylindrical al-
Canny, 293	gebraic decomposition
Canny's roadmap algorithm, 293–298, 30	7, collision detection, 209–217
315, 324, 339	broad-phase, 210
car pulling trailers, 13, 730–731	checking a path segment, 214–217
Caratheodory, solution sense of, 387	hierarchical methods, $210-212$

incremental methods, 212–214 narrow-phase, 210	conditional plan, see feedback plan conditional probability, 443
two-phase, 210	configuration space, 127–180
collision pairs, 156	obstacle, see obstacle region, C-space
collision-detection, 812–813	of 2D rigid bodies, 145–148
collocation, 857	of 3D rigid bodies, 148–154
combinatorial motion planning, 249–307	of chains of bodies, 154–155
cell decompositions, 264–280	of trees of bodies, 155
introductory concepts, 249–251	velocity constraints on, 716–735
polygonal case, 251–264	conformations, 110, 351
see also Canny's roadmap algorithm	connected space, 139
	connectivity-preserving roadmap, 251
see also cylindrical algebraic decom-	connector in a roadmap, 241
position	conservative approximations, 593–595
combinatorial roadmaps, 237	conservative system, 766
commutative group, 142, 898	constant vector field, 384
commutative ring, 170	constant-sum game, 492
commutator, 898	contaminated region, 688
commutator motion, 897–900, 911	continuous Dijkstra paradigm, 357
compass, 600, 647	continuous function, 131
compatible coordinate neighborhoods, 393	3continuous-steering car, 743–744
competitive ratio, 602, 672–673	contractible space, 144
complementary pair, 59	control system, 715, 793
complete exclusion axiom, 70	control-affine system, 741, 890–892
completely integrable, 734, 893–894	controllability matrix, 868
completeness	controllability of a system, 867–870
overview, 185–186	linear case, 868
see also probabilistic completeness	small-time local, see small-time lo-
see also resolution completeness	cal controllability
complex, 265–268	controlled Markov process, 498
complexity class, 299	convex hull, 211, 388
complexity of motion planning, 298–307	convex polygon, 82–84
lower bounds, 298–302	convex set, 82
upper bounds, 304–307	convolution, 158
compliant motions, 692–693, 697	cooperative game theory, 490
composition of funnels, 413–419, 702, 865	coordinate neighborhood, 391
compressed mode, 330	coordinates, 391
computational algebraic geometry, 280-	coordination space, 323
298	Coriolis matrix, 770
Conchoid of Nicomedes, 277, 308	cost functional, 44, 359, 363, 501, 523,
conditional Bayes' risk, 453	625, 839
conditional Bayes' rule, 443	approximating, 424
conditional expectation, 444	quadratic, 874
conditional independence, 443	cost-based learning, see reinforcement learn

ing	decoupled planning, 320, 841–855
cost-to-come, 36, 48–50, 799	decoupling vector fields, 849, 921
cost-to-come iteration, see forward value	deformation retract, 260
iteration	degrees of freedom, 95
cost-to-go, 37, 45–46, 361, 373, 375–377,	delayed-observation sensor, 564
379, 380, 402, 404–407, 413, 420,	Denavit-Hartenberg parameters, 103–106,
423–429, 551, 811, 835, 836, 839,	110, 149, 154, 167, 179
840, 852, 853	dense sequence, 195, 798
see also stationary cost-to-go func-	dense set, 195
tion	dependent events, 443
cost-to-go iteration, see backward value	depth-first search, 36
iteration	depth-mapping sensors, 603–605
Coulomb friction, 693	derivation (on a manifold), 396
counting measure, 193	derived information space, 571–581, 592–
covariance matrix, 596	598
cover of a set, 413	for continuous time, 597–598
approximate, 414	derived information transition equation,
coverage planning, 354–357	573
Coxeter-Freudenthal-Kuhn triangulation	determining the environment 656–660
422	deterministic finite automaton, 31, 585
critical curves, 276	language, 31
critical gap events, 674–675	deterministic plan, 538, 545, 621
critical point of a function, 295, 410	DFA, see deterministic finite automaton
cube complex, 325–327	DH parameters, see Denavit-Hartenberg
cubical partition, 828	parameters
CW-complex, 265	Dial's algorithm, 380
cycloid function, 762	diameter function, 702
cylinder over a cell, 270, 276, 290	dielectric constant, 352
cylindrical algebraic decomposition, 286-	
293, 315, 324	diffeomorphic spaces, 385
for motion planning, 292–293	diffeomorphism, 385
cylindrical decomposition, 269–270	differentiable manifold, see smooth man- ifold
cylindrical joint, 105	
D* .1 '.1 Ct	differentiable structure, see smooth struc- ture
D* algorithm, see Stentz's algorithm	differential constraints, see differential
D'Alembert, 776	models
Davenport-Schinzel sequence, 302–304	differential drive, 908
Davis-Putnam procedure, 69	·
dead states, 33, 34, 37, 427	Balkcom-Mason, see Balkcom-Mason drive
decision maker, 4, 437	model, 726–729
decision problem, 283	
decision theory, 437	second-order, 744
decision vertex (in a game tree), 536	showing it is nonholonomic, 902
decision-theoretic learning, see reinforce-	differential game, 782–783
ment learning	against nature, 780

pursuit-evasion, 782 differential inclusion, 388, 780	dominated plan, 364 Donald, 627, 697
differential models, 715–783	double integrator, 737–738, 744, 747, 755,
conversion from implicit to paramet-	790, 792, 796
ric, 720–722	lattice, 820–828
implicit representation, 716–718	optimal planning for, 877–878
parametric representation, 718–720	doubly connected edge list, 86, 252, 253,
differential rotations, 755–756	258
differentially flat systems, 921	drift, 739, 741, 793, 891
digital actor, 12	driftless, 741, 793
Dijkstra's algorithm, 27, 36–37, 55–57,	driftless system, 739, 891
377, 378, 380, 403, 404, 407, 426,	controllability, 908–909
428, 552, 663, 666, 823, 840, 852	drug design, 15, 350–353
extension of to continuous spaces, 426	Dubins car, 725, 782, 794, 796, 800, 803,
429	806, 811, 817, 828, 829, 831, 832,
with nondeterministic uncertainty, 51	
521	plan-and-transform approach, 843—
with probabilistic uncertainty, 521	844
dimension	reachability tree of, 803–804
of a manifold, 134	Dubins curves, 880–883
of a vector space, 383	Dubins metric, 883
directed roadmap, 315	dynamic constraints, 891
Dirichlet boundary condition, 412	dynamic game, see differential game
disconnection proof, 246	dynamic programming, 27
discount factor, 523	applied to steering, 922
discounted cost model, 522–524	continuous-time, 870–879
discrepancy, 205–209, 811–812	see also Dijkstra's algorithm
range space, 206	see also Hamilton-Jacobi-Bellman equa- tion
relation to dispersion, 207	see also value iteration
discrete feasible planning, 29	dynamics
discrete-time model, 801–808	of a particle, 747–752
discretization of C , 221	of a rigid body, 753–762
dispersion, 201–205, 420, 811–812	of a set of particles, 752–753
relation to discrepancy, 207	of a two-link manipulator, 771–773
distance between sets, 209–210	of chains of bodies, 769–773
distance function, 209	of constrained bodies, 774–777
distribution (of vector fields), 894–897	with nonconservative forces, 777
regular, 895	
singular, 895–896	efficient algorithm, 299, 302, 304
disturbed odd/even sensor, 564	elongated mode, 330
disturbed sign sensor, 564	EM algorithm, 682–684
DM, see decision maker	embedding of a manifold, 134
domain of attraction, 864–865	energy function, 347, 350, 352
dominated action, 440	equilibrium point of a vector field, 862

Erdmann, 696, 699	motivation, 369–371
error detection and recovery (EDR), 697	sampling-based, 412–429
Euclidean metric, 187	under differential constraints, 837–
Euclidean motion model, 361–362	841
Euclidean norm, 188	feedback plan, 372–373, 505–508
Euclidean shortest paths, 357–358	$\cos t of, 507-508$
Euler angles, 122	graph representation of, 507
Euler approximation, 424	information feedback, 568–569
Euler integration, see numerical integra-	over a cover, 415–416
tion, Euler	sensor feedback, 581
Euler-Lagrange equation, 765–770, 879,	feedback planning
891, 918, 922	continuous, see feedback motion plan-
with conservative forces, 777	ning
event space, 442	discrete, 371–381
exact motion planning, see combinato-	feedback policy, see feedback plan
rial motion planning	feedback stabilization, 862
exit face, 403	fiber over a base, 895
exotic \mathbb{R}^4 , 393	fictitious action variable, 911
expansive-space planner, 227–228	field, 168–169
expectation of a random variable, 444	algebraically closed, 287
expected-case analysis, 449, 508, 570	Filipov, solution sense of, 388, 398
exploration vs. exploitation, 530	fine motion planning, see manipulation
exponential map, 912–913	planning
exponentially stable system, 864	finite state machine, 31
EXPTIME, 299	firetruck, 731
extended Kalman filter, 617, 655	first-order controllable systems, 919–920
extended system, 910	first-order theory of the reals, 283
exterior point, 129	fixed point of a vector field, 862
extremal function, 764	fixed-path coordination, 323–325
f. II:	fixed-roadmap coordination, 325–327
falling particle, 767–768	flashlight example, 59–61
fast Fourier transforms, 425	Boolean expression for, 70
Faure sequence, 208	planning graph of, 67
feasible planning	flashlight sensor, 691
discrete, 29	flat cylinder, 136
with feedback, 373–374	,
feasible space (for closure constraints),	flat outputs, 921
339	flat torus, 137 flexible materials, 121
feature space, 456	
feature vector, 456, 457	flying an airplane, 732–733
feedback control law, see feedback plan	folding problems, 347–354
feedback motion planning	foliation, 799, 893
complete, optimal, 404–407	force, 747, 748, 751–755, 760, 761, 766,
complete, some dynamics, 407–412	767
definitions, 398–402	resultant, 748, 752

force sensor, 601	ladder-nested, 623
formal Lie algebra, 912–913	normal form, 536
forward projection, 501, 799	open-loop model, 539, 621
differential, 781	sequential, see sequential game
nondeterministic, 501–502	stage-by-stage model, 538, 621
probabilistic, 502–503	unusual information model, 621
under a fixed plan, 506	see also game theory
forward search, 33–39	game against nature, 446–459
A* algorithm, 37–38	sequential, 496–508, 551–556
best first, 38–39	game graph, 544
breadth-first, 35	game theory, 437, 459–476, 489–490, 536–
depth-first, 36	551, 619–627
Dijkstra's algorithm, 36–37	information spaces in, 619–627
general, discrete, 33–35	nonzero-sum, see nonzero-sum game
iterative deepening, 39	sequential, see sequential game
forward value iteration, 48–50	1 , 1
four-bar mechanism, 175	zero-sum, see zero-sum game
frame axiom, 70	game tree, 536–544
Fraunhofer Chalmers Centre, 8	information space over, 619–623
Frazzoli, 809	gap navigation tree, 673–679
free space, 156	gap sensor, 604
free variables, 282	gap theorems, 287
frequentist, 483–484	garage configuration, 325
frequentist risk, 484	Gaussian sampling, 243
friction cone, 693	Geiger counter sensor, 602
Frobenius theorem, 901–902	general linear group, 145
frontier set, 427, 520, 840	general position, 255, 675
fully actuated system, 793	generalized coordinates, 767
function space, 383, 590, 763	generalized cylinder, 92
functional, 763	generalized damper model, 693
shortest-path, 764	generalized forces, 768, 769, 776
fundamental group, 142–144	generalized momentum, 779
higher order, 144	generalized Voronoi diagram, see maximum-
of a simply connected space, 142	clearance roadmap
of \mathbb{RP}^2 , 143–144	generator of a lattice, 204
of \mathbb{S}^1 , 142–143	geodesics, 766, 810
of \mathbb{T}^n , 143	geometric modeling, 81–92
Fundamental Lemma of the Calculus of	Gilbert-Johnson-Keerthi algorithm, 244
Variations, 765	gingerbread face, 87, 284, 291
variations, 105	globally asymptotically stable, 865
Gabriely and Rimon, 355	globally positive definite, 866
gain constant, 409	globally randomized plan, 622
game	GNT, see gap navigation tree
alternating-play model, 538, 621	goal recognizability, 582, 696
extensive form, 536	goal sensor, 667
, , , , , , , , , , , , , , , , , , , ,	0

Goursat normal form, 920 Grübler's formula, 180 gradient descent, 375, 401, 410 graph search on an information space, 638 grasped configurations, 334 gray-scale map, 92, 665 grat circle, 190 grid, 318 2D planning on, 29 feedback plan on, 374 infinite sequence, 204-205 localization on, see localization, discrete multi-resolution, 205 navigation function on, 376-381 neighborhoods, 221 partial, 205 resolution issues, 223-224 set of environments, 655-662 standard, see standard grid Sukharev, see Sukharev grid see also lattice grid point, 221 grid resolution, 201 group, 141 see also fundamental group see also fundamental group see also matrix groups group axioms, 141 group of n -dimensional rotation matrices, 146 guaranteed reachable, 512 guard in a roadmap, 241 gyroscope, 601 Hamilton-Jacobi-Bellman equation, 515, 870-873 Hamilton-Jacobi-Isaacs equation, 873 Hamilton-Jacobi-Isaacs equation, 975 Hamilton-Jacobi-Isaacs equation, 975 Hamilton-Jacobi-Isaacs equation, 975 Hamilton-Jacobi-Isaacs equation, 975 Hamiltonian mechanics, see mechanics, Hamiltonian mechanics, see nothanics, see sea see nothanics, see sea see nothanics, see sea see nothanics, see nothanics, see sea see nothanics, see nothanics, see nothanics, see nothanics, see nothanics, see sea see n	Goldberg and Mason, 701 golden ratio, 209	Hamilton's principle of least action, 766–768
gradient descent, 375, 401, 410 graph search on an information space, 638 grasped configurations, 334 gray-scale map, 92, 665 great circle, 190 grid, 318 2D planning on, 29 feedback plan on, 374 infinite sequence, 204-205 localization on, see localization, discrete multi-resolution, 205 navigation function on, 376 381 neighborhoods, 221 partial, 205 resolution issues, 223-224 set of environments, 655-662 standard, see standard grid Sukharev, see Sukharev grid see also lattice grid point, 221 group, 141 see also fundamental group see also matrix groups group axioms, 141 group of n -dimensional rotation matrices, 146 guaranteed reachable, 512 guard in a roadmap, 241 gyroscope, 601 Hamiltonian function, 778, 779, 875 Hamiltonian mechanics, see mechanics, Hamiltonian function, 778, 779, 875 Hamiltonian function, 722, 788 harmonic potential function, 412 Hausdorff space, 131 Heisenberg system, see nonholonomic integrator belicopter flight, 809 Hessian, 410 hide and seek, 11 hide-and-seek see also pursuit-evasion game hierarchical inclusion of a plan, 23, 693 hierarchical planning, 23, 336 higher order controllability, 920 Hilbert space, 383 hill function, 866 history, 566 history information space, 565-567, 591- 592 at stage k , 567 at time t , 591 history-based sensor mapping, 590, 591 history-based sensor mapping, 590, 591 hitch length, 730 holonomic, 735, 893 homeomorphism, 132-134, 385, 391 homicidal chauffeur, 782-783 homicidal cha	Goursat normal form, 920	Hamilton-Jacobi-Bellman equation, 515,
on an information space, 638 grasped configurations, 334 gray-scale map, 92, 665 great circle, 190 grid, 318 Hausdorff axiom, 131 Hausdorff axiom, 131 Hausdorff space, 131 Heisenberg system, see nonholonomic integrator heighborhoods, 221 heighborhoods, 221 partial, 205 resolution issues, 223–224 set of environments, 655–662 standard, see Sukharev grid see also lattice grid point, 221 grid resolution, 201 group, 141 see also fundamental group see also matrix groups group axioms, 141 group of n -dimensional rotation matrices, 146 guaranteed reachable, 512 guard in a roadmap, 241 gyroscope, 601 Hausdorff axiom, 131 Hausdorff space, 131 Heisenberg system, see nonholonomic integrator heisenberg system, see also pursuit-evasion game hierarchical planning, 23, 336 higher andreson pursuit-evasion game hierarchical planning, 23, 336 higher order controllability, 920 higher order controllability, 920 higher order	gradient descent, 375, 401, 410	- ,
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
grid, 318 2D planning on, 29 feedback plan on, 374 infinite sequence, $204-205$ localization on, see localization, discrete multi-resolution, 205 navigation function on, 376–381 neighborhoods, 221 partial, 205 resolution issues, 223–224 set of environments, $655-662$ standard, see standard grid Sukharev, see Sukharev grid see also lattice grid point, 221 group, 141 see also fundamental group see also matrix groups group axioms, 141 group of n -dimensional rotation matrices, 146 guaranteed reachable, 512 guard in a roadmap, 241 gyroscope, 601 Hausdorff axiom, 131 Hausdorff space, 131 Hausdorff space, 131 Heisenberg system, see nonholonomic integrator helicopter flight, 809 Hessian, 410 hide and seek, 11 hide-and-seek see also pursuit-evasion game hierarchical inclusion of a plan, 23, 693 hierarchical planning, 23, 336 higher order controllability, 920 Hilbert space, 383 hill function, 866 history, 566 history information space, $565-567$, $591-592$ at time t , 591 history information state, 566 history-based sensor mapping, 590 , 591 hitch length, 730 holonomic, 735 , 893 homeomorphics spaces, 132 homeomorphics paces, 132 homeomorphism, $132-134$, 385 , 391 homicidal chauffeur, $782-783$ homing sensor, 602 homogeneous transformation matrix, 96 , 97 , $100-103$, $105-108$, 110 , 121 , 124 , 145 , $165-167$ homology, 144 homotopic paths, 140 Halton sequence, $207-208$		v
2D planning on, 29 feedback plan on, 374 infinite sequence, $204-205$ localization on, see localization, discrete multi-resolution, 205 navigation function on, $376-381$ neighborhoods, 221 partial, 205 resolution issues, $223-224$ set of environments, $655-662$ standard, see standard grid Sukharev, see Sukharev grid see $also$ lattice grid point, 221 grid resolution, 201 group, 141 see $also$ fundamental group see $also$ matrix groups group axioms, 141 group of n -dimensional rotation matrices, 146 guaranteed reachable, 512 guard in a roadmap, 241 gyroscope, 601 holomomic, 735 , 893 homeomorphism, $132-134$, 385 , 391 homeomorphism, $132-134$, 385 , 391 homeomorphism, $132-134$, 385 , 391 homicidal chauffeur, $782-783$ homing sensor, 602 homogeneous transformation matrix, 96 , hairy ball theorem, 400 half-edge, 86 , 253 half-space, 87 homology, 144 homotopic paths, 140 homotopic paths, 140 homotopy group, see fundamental group		
$\begin{array}{lll} \text{feedback plan on, } 374 & \text{Heisenberg system, } see \text{ nonholonomic in} \\ & \text{infinite sequence, } 204-205 & \text{tegrator} \\ & \text{localization on, } see \text{ localization, } \text{discrete} & \text{Hessian, } 410 \\ & \text{multi-resolution, } 205 & \text{hide and seek, } 11 \\ & \text{navigation function on, } 376-381 & \text{hide-and-seek} \\ & \text{neighborhoods, } 221 & \text{see also pursuit-evasion game} \\ & \text{partial, } 205 & \text{hierarchical inclusion of a plan, } 23, 693 \\ & \text{resolution issues, } 223-224 & \text{set of environments, } 655-662 & \text{higher order controllability, } 920 \\ & \text{standard, } see \text{ standard grid} & \text{Hilbert space, } 383 \\ & \text{Sukharev, } see \text{ Sukharev grid} & \text{hill function, } 866 \\ & \text{history, } 566 \\ & \text{prid point, } 221 & \text{prid resolution, } 201 & 592 \\ & \text{group Axioms, } 141 & \text{see also fundamental group} & \text{see also fundamental group} & \text{see also matrix groups} \\ & \text{group axioms, } 141 & \text{story information state, } 566 \\ & \text{guaranteed reachable, } 512 & \text{hitch length, } 730 \\ & \text{bolonomic, } 735, 893 \\ & \text{homeomorphic spaces, } 132 \\ & \text{guard in a roadmap, } 241 & \text{homeomorphism, } 132-134, 385, 391 \\ & \text{homeomorphism, } 132-134, 385, 391 \\ & \text{homeomorphism, } 132-134, 385, 391 \\ & \text{homicidal chauffeur, } 782-783 \\ & h$	9 .	•
$\begin{array}{lll} \text{infinite sequence, } 204-205 & \text{tegrator} \\ \text{localization on, } see \text{ localization, } \text{discrete} & \text{Hessian, } 410 \\ \text{multi-resolution, } 205 & \text{hide and seek, } 11 \\ \text{hide and seek, } 11 & \text{hide-and-seek} \\ \text{neighborhoods, } 221 & see also \text{ pursuit-evasion game} \\ \text{partial, } 205 & \text{hierarchical inclusion of a plan, } 23, 693 \\ \text{resolution issues, } 223-224 & \text{hierarchical planning, } 23, 336 \\ \text{set of environments, } 655-662 & \text{higher order controllability, } 920 \\ \text{standard, } see \text{ standard grid} & \text{Hilbert space, } 383 \\ \text{Sukharev, } see \text{ Sukharev grid} & \text{hill function, } 866 \\ \text{sistory information space, } 565-567, 591-200 \\ \text{group, } 141 & \text{see also fundamental group} \\ \text{see also matrix groups} & \text{at time } t, 591 \\ \text{group axioms, } 141 & \text{stage } k, 567 \\ \text{group axioms, } 141 & \text{story-based sensor mapping, } 590, 591 \\ \text{history-based sensor mapping, } 590, 591 \\ \text{history-based sensor mapping, } 590, 591 \\ \text{hich length, } 730 & \text{holonomic, } 735, 893 \\ \text{bolonomic, } 735, 893 & \text{homeomorphism, } 132-134, 385, 391 \\ \text{guaranteed reachable, } 512 & \text{homeomorphism, } 132-134, 385, 391 \\ \text{gyroscope, } 601 & \text{homicidal chauffeur, } 782-783 \\ \text{homicidal chauffeur, } 782-783 \\ \text{homing sensor, } 602 \\ \text{hairy ball theorem, } 400 & 97, 100-103, 105-108, 110, 121, 121, 121, 124, 145, 165-167 \\ \text{half-plane, } 83 & \text{homotopic paths, } 140 \\ homotop$		_ '
$\begin{array}{c} \text{localization on, see localization, discrete} \\ \text{multi-resolution, } 205 \\ \text{navigation function on, } 376-381 \\ \text{neighborhoods, } 221 \\ \text{partial, } 205 \\ \text{resolution issues, } 223-224 \\ \text{set of environments, } 655-662 \\ \text{standard, } see \text{ standard grid} \\ \text{Sukharev, } see \text{ Sukharev grid} \\ \text{see also lattice} \\ \text{grid point, } 221 \\ \text{group, } 141 \\ \text{see also fundamental group} \\ \text{see also matrix groups} \\ \text{group axioms, } 141 \\ \text{group of n-dimensional rotation matrices, } 146 \\ \text{guaranteed reachable, } 512 \\ \text{guard in a roadmap, } 241 \\ \text{gyroscope, } 601 \\ \text{Haar measure, } 193-195 \\ \text{hairy ball theorem, } 400 \\ \text{half-space, } 87 \\ \text{Halton sequence, } 207-208 \\ \text{homotopy group, } see \text{fundamental group} \\ \text{full bert space, } 383 \\ \text{hill function, } 866 \\ \text{history, } 566 \\ \text{history information space, } 565-567, 591-592 \\ \text{full function, } 866 \\ \text{history information state, } 566 \\ \text{history information state, } 566 \\ \text{history information state, } 566 \\ \text{history-based sensor mapping, } 590, 591 \\ \text{hitch length, } 730 \\ \text{homeomorphic spaces, } 132 \\ \text{homeomorphism, } 132-134, 385, 391 \\ \text{homicidal chauffeur, } 782-783 \\ \text{homing sensor, } 602 \\ \text{homogeneous transformation matrix, } 96, \\ \text{hair, } 97, 100-103, 105-108, 110, 121, \\ 124, 145, 165-167 \\ \text{homology, } 144 \\ \text{homotopic paths, } 140 \\ \text{homotopy group, } see \text{fundamental group} \\ \text{homotopy group} \\ h$	- · · · · · · · · · · · · · · · · · · ·	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	localization on, see localization, dis-	helicopter flight, 809
$\begin{array}{llllllllllllllllllllllllllllllllllll$	crete	Hessian, 410
neighborhoods, 221 partial, 205 resolution issues, 223–224 set of environments, 655–662 standard, see standard grid Sukharev, see Sukharev grid see also lattice grid point, 221 group, 141 see also fundamental group see also matrix groups group axioms, 141 group of n -dimensional rotation matrices, 146 guaranteed reachable, 512 guard in a roadmap, 241 gyroscope, 601 Haar measure, 193–195 haif-plane, 83 half-space, 87 Halton sequence, 207–208 set of environments, 223–224 hierarchical inclusion of a plan, 23, 693 hierarchical planning, 23, 336 hierarchical planning, 23, 336 higher order controllability, 920 Hilbert space, 383 hill function, 866 history, 566 history information space, 565–567, 591–592 at stage k , 567 at time t , 591 at time t , 591 at time t , 591 history-based sensor mapping, 590, 591 history-based sensor mapping, 590, 591 history-based sensor mapping, 590, 591 hitch length, 730 holonomic, 735, 893 homeomorphism, 132–134, 385, 391 homeomorphism, 132–134, 385, 391 homeomorphism, 132–134, 385, 391 homicidal chauffeur, 782–783 homicidal chau	•	•
$\begin{array}{lll} \text{partial, } 205 & \text{hierarchical inclusion of a plan, } 23, 693 \\ \text{resolution issues, } 223-224 & \text{hierarchical planning, } 23, 336 \\ \text{set of environments, } 655-662 & \text{higher order controllability, } 920 \\ \text{standard, } see \text{standard grid} & \text{Hilbert space, } 383 \\ \text{Sukharev, } see \text{Sukharev grid} & \text{hill function, } 866 \\ \text{see } also \text{lattice} & \text{history, } 566 \\ \text{grid point, } 221 & \text{bistory information space, } 565-567, 591-2000 \\ \text{group, } 141 & \text{see } also \text{fundamental group} & \text{at } \text{time } t, 591 \\ \text{see } also \text{matrix groups} & \text{history information state, } 566 \\ \text{group axioms, } 141 & \text{history-based sensor mapping, } 590, 591 \\ \text{group of } n\text{-dimensional rotation matrices, } 146 & \text{holonomic, } 735, 893 \\ \text{guaranteed reachable, } 512 & \text{homeomorphic spaces, } 132 \\ \text{guard in a roadmap, } 241 & \text{homeomorphism, } 132-134, 385, 391 \\ \text{gyroscope, } 601 & \text{homicidal chauffeur, } 782-783 \\ \text{homing sensor, } 602 \\ \text{Haar measure, } 193-195 & \text{homogeneous transformation matrix, } 96, \\ \text{hairy ball theorem, } 400 & 97, 100-103, 105-108, 110, 121, \\ \text{half-edge, } 86, 253 & 124, 145, 165-167 \\ \text{half-plane, } 83 & \text{homology, } 144 \\ \text{half-space, } 87 & \text{homotopic paths, } 140 \\ \text{Halton sequence, } 207-208 & \text{homotopy group, } see \text{fundamental group} \\ \end{array}$	·	
resolution issues, $223-224$ hierarchical planning, 23 , 336 set of environments, $655-662$ higher order controllability, 920 standard, see standard grid Hilbert space, 383 hill function, 866 see also lattice history, 566 grid point, 221 for resolution, 201 592 group, 141 at stage k , 567 at stage k , 567 see also fundamental group see also matrix groups see also matrix groups group of n -dimensional rotation matrices, 146 suranteed reachable, 512 guard in a roadmap, 241 homeomorphics spaces, 132 homeomorphism, $132-134$, 385 , 391 gyroscope, 601 homicidal chauffeur, $782-783$ homing sensor, 602 homogeneous transformation matrix, 96 , hairy ball theorem, 400 97 , $100-103$, $105-108$, 110 , 121 , half-edge, 86 , 253 homology, 144 homology, 144 homotopic paths, 140 homotopic paths, 140 homotopy group, see fundamental group homotopy group, see fundamental group	,	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-	
$\begin{array}{lll} \text{standard, } see \; \text{standard grid} \\ \text{Sukharev, } see \; \text{Sukharev grid} \\ see \; also \; \text{lattice} \\ \text{prid point, } 221 \\ \text{grid point, } 221 \\ \text{group, } 141 \\ \text{see } also \; \text{fundamental group} \\ \text{see } also \; \text{fundamental group} \\ \text{see } also \; \text{fundamental group} \\ \text{see } also \; \text{matrix groups} \\ \text{group axioms, } 141 \\ \text{group of } n\text{-dimensional rotation matrices, } 146 \\ \text{guaranteed reachable, } 512 \\ \text{guard in a roadmap, } 241 \\ \text{gyroscope, } 601 \\ \text{Haar measure, } 193-195 \\ \text{hairy ball theorem, } 400 \\ \text{half-plane, } 83 \\ \text{half-space, } 87 \\ \text{Halton sequence, } 207-208 \\ \end{array}$ $\begin{array}{ll} \text{Hilbert space, } 383 \\ \text{hill function, } 866 \\ \text{history, } 566 \\ \text{history information space, } 565-567, 591-592 \\ \text{at stage } k, 567 \\ \text{at time } t, 591 \\ \text{history-based sensor mapping, 590, 591} \\ \text{homeomorphic spaces, } 132 \\ \text{homeomorphic spaces, } 132 \\ \text{homeomorphism, } 132-134, 385, 391 \\ \text{homing sensor, } 602 \\ \text{homoigneous transformation matrix, } 96, \\ \text{principle} 1, 100-103, 105-108, 110, 121, \\ \text{half-edge, } 86, 253 \\ \text{homology, } 144 \\ \text{homotopic paths, } 140 \\ \text{homotopic paths, } 140 \\ \text{homotopy group, } see \; \text{fundamental group} \\ \text{homotopy group, } see \; fundamen$	·	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	·	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		•
$\begin{array}{llllllllllllllllllllllllllllllllllll$		* '
$\begin{array}{llllllllllllllllllllllllllllllllllll$	9 - '	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		at stage k , 567
group axioms, 141 history-based sensor mapping, 590, 591 group of n -dimensional rotation matrices, 146 holonomic, 735, 893 homeomorphic spaces, 132 guard in a roadmap, 241 homeomorphism, 132–134, 385, 391 gyroscope, 601 homicidal chauffeur, 782–783 homing sensor, 602 hairy ball theorem, 400 p7, 100–103, 105–108, 110, 121, half-edge, 86, 253 homology, 144 homology, 144 homotopic paths, 140 homotopy group, see fundamental group	·	
group of n -dimensional rotation matrices, 146 holonomic, 735, 893 homeomorphic spaces, 132 homeomorphism, 132–134, 385, 391 gyroscope, 601 homicidal chauffeur, 782–783 homing sensor, 602 haar measure, 193–195 homogeneous transformation matrix, 96, hairy ball theorem, 400 97, 100–103, 105–108, 110, 121, half-edge, 86, 253 homology, 144 homotopic paths, 140 homotopy group, see fundamental group	see also matrix groups	history information state, 566
ces, 146 guaranteed reachable, 512 guard in a roadmap, 241 gyroscope, 601 homeomorphism, 132–134, 385, 391 homeomorphism, 132–134, 385, 391 homicidal chauffeur, 782–783 homing sensor, 602 Haar measure, 193–195 homogeneous transformation matrix, 96, hairy ball theorem, 400 97, 100–103, 105–108, 110, 121, half-edge, 86, 253 homology, 144 half-space, 87 homotopic paths, 140 Halton sequence, 207–208 homotopy group, see fundamental group	group axioms, 141	history-based sensor mapping, 590, 591
guaranteed reachable, 512 guard in a roadmap, 241 gyroscope, 601 homeomorphism, 132–134, 385, 391 homicidal chauffeur, 782–783 homing sensor, 602 Haar measure, 193–195 homogeneous transformation matrix, 96, hairy ball theorem, 400 p7, 100–103, 105–108, 110, 121, half-edge, 86, 253 homology, 144 half-space, 87 homotopic paths, 140 Halton sequence, 207–208 homotopy group, see fundamental group	group of n -dimensional rotation matri-	
guard in a roadmap, 241 gyroscope, 601 homicidal chauffeur, 782–783 homing sensor, 602 Haar measure, 193–195 hairy ball theorem, 400 half-edge, 86, 253 homogeneous transformation matrix, 96, 124, 145, 165–167 half-plane, 83 homology, 144 half-space, 87 homotopic paths, 140 Halton sequence, 207–208 homotopy group, see fundamental group	•	•
gyroscope, 601 homicidal chauffeur, 782–783 homing sensor, 602 Haar measure, 193–195 homogeneous transformation matrix, 96, hairy ball theorem, 400 97, 100–103, 105–108, 110, 121, half-edge, 86, 253 124, 145, 165–167 half-plane, 83 homology, 144 homotopic paths, 140 Halton sequence, 207–208 homotopy group, see fundamental group		
homing sensor, 602 Haar measure, 193–195 hairy ball theorem, 400 half-edge, 86, 253 half-plane, 83 half-space, 87 half-space, 87 halton sequence, 207–208 homing sensor, 602 homogeneous transformation matrix, 96, 97, 100–103, 105–108, 110, 121, 124, 145, 165–167 homology, 144 homotopic paths, 140 homotopy group, see fundamental group	_ ·	_ · · · · · · · · · · · · · · · · · · ·
Haar measure, 193–195 homogeneous transformation matrix, 96, hairy ball theorem, 400 97, 100–103, 105–108, 110, 121, half-edge, 86, 253 124, 145, 165–167 half-plane, 83 homology, 144 half-space, 87 homotopic paths, 140 Halton sequence, 207–208 homotopy group, see fundamental group	gyroscope, 601	•
hairy ball theorem, 400 97, 100–103, 105–108, 110, 121, half-edge, 86, 253 124, 145, 165–167 half-plane, 83 homology, 144 half-space, 87 homotopic paths, 140 homotopy group, see fundamental group	Hear massure 102 105	,
half-edge, 86, 253 half-plane, 83 half-space, 87 Halton sequence, 207–208 124, 145, 165–167 homology, 144 homotopic paths, 140 homotopy group, see fundamental group	·	
half-plane, 83 homology, 144 half-space, 87 homotopic paths, 140 Halton sequence, 207–208 homotopy group, see fundamental group	,	
half-space, 87 homotopic paths, 140 Halton sequence, 207–208 homotopy group, see fundamental group		
Halton sequence, 207–208 homotopy group, see fundamental group	-	90 .
	-	
Hamilton's equations, 779, 879, 891, 922 humanoid, 13, 14, 114	Hamilton's equations, 779, 879, 891, 922	humanoid, 13, 14, 114

hybrid state space, 328 see also history information space hybrid system, 327–332, 388 see also nondeterministic information motion planning, 327 with nature, 552–556 see also probabilistic information space I-map, see information mapping information state, 560 I-space, see information space information transition equation, 570–571 I-state, see information state derived, 573–574 ibuprofen, 17 information transition function, 570 ideal distance function, 811 information-conservative property, 688 identification of points, 136 information-feedback plan, 568 identity sensor, 562, 598 initial condition space, 566–567, 590 implicit function theorem, 722 input string, 585 implicit velocity constraints, 718 integrable system, 734 improper prior, 485 integral curve, 387–388 incomparable actions, 440 integral manifold, 893 incremental distance computation, 212 integration, see numerical integration incremental sampling and searching interior of a set, 129 adapting search algorithms, 220–224 interior point, 129 general framework, 217–220 interpolation neighbors, 420 under differential constraints, 820interpolation region (for value iteration), 837 422, 551 independent events, 443 interval homeomorphisms, 132 independent-joint motion model, 361 intractable problem, 299 inertia matrix, 756–759, 766 inverse Ackerman function, 304 inertia operator, see inertia matrix inverse control problem, 816 inertia tensor, see inertia matrix inverse kinematics problem, 120 inertial coordinate frame, 746–747, 754, involutive distribution, 901 755, 762, 767 Isaacs, 782 infimum, 439 isomorphic graphs, 133 infinite reflection (in a game), 489 isomorphic groups, 149 infinite-horizon problem, 522–527 isomorphism, 132 inflection ray, 674 iterative deepening, 39 information mapping, 571–574 sufficient, 573–574 Jacobi identity, 904, 907, 920 information space, 559–627 Jacobian, 294 continuous examples, 598–614 jerk (third time derivative), 738, 853 continuous time, 591–592 joint encoder, 601 conversion to a state space, 570–571, junction of links, 114 634 - 637discrete examples, 581–589 Kagami, 13 Kalman filter, 615–617 for game theory, 619–627 Kalman rank condition, 868 in continuous state spaces, 589–614 limited memory, 580–581 Kd-tree, 233–234, 417, 831 sensor feedback, 580–581 Khalil-Kleinfinger parameterization, 115

Khatib, 401	layered plan, 68
kidnapped-robot problem, 640	learning phase, 529
kinematic chain, 100	leaves of a foliation, 799, 893
kinematic constraints, 791, 891	Lebesgue integral, 193
kinematic singularities, 346	Lebesgue measure, 193
kinematically controllable, 921	left translation, 905
kinematics for wheeled systems, 722–731	left-invariant vector field, 905
Kineo CAM, 7, 16	left-turn predicate, 263
kinetic energy, 752, 760, 766–769, 772,	Legendre transformation, 778
776	Legendre-Clebsch condition, 879
kinodynamic planning, 792, 820–828	Leibniz rule, 396
Klein bottle, 138	Lennard-Jones radii, 352
knot, 350	Lens spaces, 138
knot simplification, 350	level-set method, 430
knot vector, 91	LG, see linear Gaussian system
Koditschek, 375, 410	Lie, 892
Kolmogorov complexity, 61, 301	Lie algebra, 904–906
Kuffner, 6, 219	cross product example, 904–905
Kuhn, 622, 627	of the system distribution, 905–906
Kutzbach criterion, 180	on Lie groups, 905
	see also Philip Hall basis
L-shaped corridor example, 582–585	Lie algebra rank condition, 908
label-correcting algorithms, 56–57	Lie bracket, 897–901, 904
ladder robot, see line-segment robot	·
Lafferriere and Sussmann, 910	Taylor series approximation of, 899–
Lagrange multiplier, 774	900 Lie derivetive 866
Lagrangian function, 767, 769, 772, 776,	Lie derivative, 866
779	Lie group, 145, 905
Lagrangian mechanics, see mechanics, La	_ ligand, 350
grangian, 127	limit curve, 853
landmark region detector, 602	limit cycle, 865
landmark sensors, 602–603	limit point of a set, 129
language, 31, 588	Lin-Canny, 245
LARC, see Lie algebra rank condition	line-segment robot, 273–280
latitude in a grid, 661	line-sweep principle, see plane-sweep prin-
Latombe, 127	ciple
lattice, 204, 208	linear combination, 382
for unconstrained mechanical systems	s, linear complementarity problem, 473
825–826	linear differential game, 782
from double integrator, see double-	linear interpolation, 420
integrator lattice	linear momentum, 751
grid, see grid	linear programming, 440, 467, 855
Laumond, 16, 791	linear sensing models, 598–600
lawn mowing, 354	linear space, 382
layered graph, 65	linear system, 739–741

observability, 740	lost-cow problem, 672, 707
time-varying, 741	low-discrepancy sampling, 205–209
linear transformations, 120	low-dispersion sampling, 201–205
linear-Gaussian system, 615, 616, 655	lower envelope, 302–304, 467
linear-quadratic problems, 874–875	lower pairs, 105
linear-quadratic-Gaussian (LQG) system,	lower value of a game, 461, 540, 546
617, 875	Lozano-Pérez, 127
link, 100	Lozano-Pérez, Mason, and Taylor, 692
linkage, 100	LPM, see local planning method
linkage graph, 177	lunar lander, 748–750
Lipschitz condition, 216, 387–388, 806,	Lyapunov function, 413, 865–867
819, 831, 840, 856	in planning, 867
Lipschitz constant, 216, 388	Lyapunov stability, 862–863
LMT framework, see preimage planning,	uniform, 863
692	Lynch and Mason, 732
local operator, 375, 377, 378, 401, 403,	Möbius band, 136, 138, 144, 183
410, 514, 839	Mahalanobis metric, 811
continuous space, 401	maneuver, 809
local planning method, 217–220, 226–	maneuver automaton, 809
228, 231, 238, 240, 241, 327, 855,	Manhattan metric, 187
862, 869, 880, 883, 886, 888, 908,	Manhattan motion model, 360–361
910, 921	manifold, 134–139
in plan-and-transform, 843, 845	embedding, 134
under differential constraints, 816–	higher dimensional, 138–139
818, 833, 834, 836	one-dimensional, 135–136
local visibility sensor, 667	two-dimensional, 136–138
localization, 640–684	with boundary, 134
active, 640, 644–646	see also smooth manifold
combinatorial, 647–651	manipulation graph, 335–336
discrete, 640–647	manipulation planning, 332–337
passive, 640, 642–644	nonprehensile, see nonprehensile ma-
probabilistic, 651–655	nipulation
symmetries, 643–644	under uncertainty, 691–704
locally positive definite, 866 locally randomized plan, 622	manipulator, 107, 118, 122, 332–339, 348,
Logabex LX4 robot, 348	771–773, 846, 851
logic-based planning, 57–71	map building, 655–684
as satisfiability, 69–71	marginalization, 443–444, 502, 503, 578,
converting to state space, 61–62	Markov chain 408
in plan space, 63–64	Markov chain, 498 Markov decision process, 498
operator, 58	Markov game, 550
via a planning graph, 64–69	Markov game, 550 Markov process, 498, 499
logical predicate, see predicate	mass matrix, 766
loop path, 142	matching pennies, 446

Matlab, 856	minimax, 448
matrix game, 460	minimum turning radius, 725
matrix groups, 145–148	Minkowski difference, 158, 252, 305
matrix subgroup, 146	Minkowski sum, 158
maximal ball, 244	mixed Nash equilibrium, see Nash equi-
maximum-clearance navigation function,	librium, randomized
379–380	mixed strategy, see randomized strategy
maximum-clearance roadmap, 260–261	mod sensor, 562
maze searching, 660–662	mode space, 327
MDP, see Markov decision process	mode transition function, 328
Mealy/Moore machines, 31	mode-dependent dynamics, 327
means-end analysis, 71	moment of a density, 597
measurable function, 193	moment of force, see torque, 753
measurable sets, 192	moment of inertia, 758
measure axioms, 192	moment of momentum, 751–753, 755,
measure space, 186	761
measure theory, 191–195, 811	moment-based approximations, 595–597
see also Haar measure	momentum, 751
measure zero, 193	monomial, 169
mechanics, 745–780	monotone polygon, 269
Hamiltonian, 778–780	Monte-Carlo localization, see localiza-
Lagrangian, 762–777	tion, probabilistic
Newton-Euler, 745–762	morphing a path, 140
see also dynamics	Morse function, 411
medial-axis sampling, 244	Morse theory, 411
Mersenne twister, 200	motion capture, 858
metric space, 186–188	motion command, 694–695
Cartesian products of, 188	motion library, see motion primitives
definition, 187	motion planning, 793
for motion planning, 188–191	motion primitive, 808–810, 836
from $SE(2)$, 189	multi-body dynamics, see dynamics, of
from $SE(3)$, 191	multiple bodies
from $SO(2)$, 188–189	multi-chained-form systems, 920
from $SO(3)$, 189–190	multi-level approach, 845
from \mathbb{T}^n , 190–191	multi-linear interpolation, 421
nonpositively curved, 857	multi-resolution grid, 204
Riemannian manifold, 810–811	multiobjective optimization, 440–441
robot displacement metric, 190	multiple observations, 454
subspaces of, 188	multiple query, 186, 237
metric tensor, 810	multiple shooting, 857
metrics, see metric space	multiple-robot motion planning, 318–327
metrizable, 187	multiple-robot optimality, 362–364
mine sweeping, 354	multiply connected, 141
minimalism, 700	Murphy's Law, 448

mutex condition, 66–67 nonconvex mutex relation, 66 polygon, 84–85, 90	
	on space, 574– 55 achine, 299 by, 448–450 ons, 696 optimal 8, 893 722 41–742, 901, omic, 902 791–792 828 by, 888–910 187 5–857 02
nicotine, 17 nonprehensile manipulation.	, 700–704
nilpotent, 910 nonrigid transformations, 12	
nilpotent system, 908 nonzero-sum game, 468–476	
nilpotentizable, 910 with more than two plays	•
Nilsson, 72 with two players, 469–47	75
Nixederreiter-Xing sequence, 208 see also Nash equilibrium	ım

NP (complexity class), 299 null sensor, 563 numerical continuation, 341 numerical integration Euler, 813–814 multistep methods, 815 Runge-Kutta, 424, 814–815	orientation sensor, 600 oriented bounding box, 211 orienteering problem, 365 origami, 347 orthogonal group, 146 outdoor navigation, 362
single-step methods, 815 NURBS, 91	painting, 354 parallel manipulator, 338 parallel-jaw gripper, 701
OBB, 211 observability, 740 observation space, 451, 561 observations, 451–454 obstacle region, 92, 155 in the C-space, 155–167 1D case, 158 general case, 164–167	parameter estimation, 458–459 parameterization, 136, 391 Pareto optimal, 362–364, 440–441, 470, 471, 476, 484 parking a car, 13, 726, 744, 800, 860, 868, 898 part configuration space, 332 partial grid, 205
polygonal case, 159–163 polyhedral case, 163–164 in the state space, 794–797 in the world, 82–92 polygonal case, 251–264 time-varying, 312–318 obstacles, 82	partial plan, 63 partially observable Markov decision process, see POMDP particle, 747 dynamics, 747–752 falling, 767–768 on a sphere, 776–777
occupancy grid, 92, 684 Ochiai unknot benchmark, 351 octane transformations, 110–112 odd/even sensor, 561–562 odometric coordinates, 645, 660 odometry sensors, 605 on-line algorithm, 20, 672–673 open ball, 130	particle filtering, 618–619, 655 path, 139 path connected, 139 path tuning, 319 path-constrained phase space, 849 path-directed subdivision tree, 837 pattern classification, 455–458 pebble, 602
open set, 89, 128 open-loop control law, 793 plan, 370 operator, 58 optical character recognition, 456–458 optimal motion planning, 357–364 optimal planning discrete, 43–57 fixed-length plans, 45–50 unspecified length, 50–53	peg-in-hole problem, 692, 696–698 pendulum, 750–751 double, 785 Pennsylvania Turnpike, 441 perfect recall, 622 permissible action trajectories, 790 Pfaffian constraints, 720–721, 724, 734, 742, 775–777, 891–894, 897, 903, 920 pharmacophore, 351 phase constraints, 795
optimization, 438–441	phase space, 735–744

obstacles, 794–797	term, 169
path-constrained, 849–850	total degree, 169
phase transition equation, 737, 738	polynomial-time reducible, 300
phase vector, 736	POMDP, 589, 638–640
Philip Hall basis, 907–908, 910–914, 917	Pontryagin's minimum principle, 515, 856,
Piano Mover's Problem, 157–158, 789,	875–879, 922
790, 817, 818, 832 - 835, 838, 841,	time-optimality case, 879
855	portiernia, 329–330
piecewise-linear obstacle motion, 313–314	, position sensor, 600
317	positive definite function, 866
pitch rotation, 98	positive literal, 58
plan-and-transform method, 842–846	possibilistic uncertainty, see nondeter-
plan-based state transition graph, 507	ministic uncertainty
plan-space planning, 65	posterior, 443
planar joint, 105	potential energy, 766, 767, 769, 772
plane-sweep principle, 257–258	potential function, 191, 225, 766
radial sweep, 263, 407	attractive term, 225
planetary navigation, 362	continuous state space, 401
planner, 21	discrete, 375
planning graph, 64–69	repulsive term, 225
planning under sensing uncertainty, 633–	see also navigation function
704	PQP (Proximity Query Package), 245
general methods, 634–640	predicate, 58
manipulation, 691–704	for geometric models, 85
pursuit-evasion, see visibility-based	preimage of a function, 131
pursuit-evasion	preimage of a motion command, 695
$see~also~{ m SLAM}$	preimage of an observation, 563
see also localization	preimage planning, 692–700
Poinsot, 754, 760	Princess and the Monster, 627
point robot, 252	principle of least action, see Hamilton's
point-location problem, 422, 830	principle of least action
policy iteration, 514–518	principle of optimality, see dynamic pro-
for reinforcement learning, 535	gramming
on an information space, 638	principle of virtual work, 776
with average cost-per-stage, 527	principle subresultant coefficients, 290
with discounted cost, 526–527	prior distribution, 443, 484–487
polygonal model, 82–85, 251–264	prioritized planning, 322
face, 253	prismatic joint, 100, 101, 103, 105, 107
half-edge, 253	Prisoner's Dilemma, 472, 490
representation, 251–253	PRM, see sampling-based roadmap
polyhedral model, 85–87	probabilistic completeness, 186
polynomial, 169–170	probabilistic information space, 577–581
coefficient, 169	approximations, 595–597
in formal Lie algebra, 912	examples, 589

planning on, 638–640	radial sweep, 263, 407
probabilistic information state	random loop generator, 343, 345
computation of, 614–619	random sampling, 198–201
probabilistic roadmap, see sampling-base	
roadmap	of directions, 199
probabilistic uncertainty, 448–450	tests, 200–201
criticisms of, 483–487	random variable, 444
probability function, 442	random-walk planner, 228
probability measure, 193	randomized algorithm, 305
probability space, 441–442	randomized lower value, 466, 542, 547
probability theory, 441–444	randomized plan, 538, 545
problem solving, 27	randomized potential field, 224–227, 402
product of inertia, 758	under differential constraints, 837
projection sensors, 600–601, 605–608	randomized saddle point, 466
projective geometry, 97	randomized security plan, 542
projective space, 138	randomized strategy, 445–446
protein cavity, 113	randomized upper value, 465
protein folding, 15, 353–354	randomized value, 466, 542
proximity sensor, 601	range scanner, 604
pseudometric, 191, 314	range space (for discrepancy), 206
pseudorandom number generation, 199–	rapidly exploring dense tree, 228–237,
200	314, 325, 340, 348
linear congruential, 200	exploration, 228–232
PSPACE, 299	finding nearest points, 232–234
Puma 560 robot, 107	making planners, 235–237
pure strategy, 445	under differential constraints, 832–
pursuit-evasion game, 627, 782, 783	836
visibility-based, see visibility-based	rapidly exploring random tree, see rapidly
pursuit-evasion	exploring dense tree
pushing a box, 731–732	Rapoport, 490
0.6.1.704	rational decision maker, 460, 479, 481
Q-factor, 534	RDT, see rapidly exploring dense tree
Q-learning, 534–535	reachability graph, 804–805
quadratic cost functional, 874	reachability tree, 802–804
quadratic potential function, 402	reachable set, 798–801
quantified variables, 282	backward, 865
quantifier, 282	for simple car models, 800
quantifier-elimination problem, 283	reactive plan, see feedback plan
quantifier-free formula, 282	real algebraic numbers, 286–287
quasi-static, 731	reality television, 478–479
quaternion, 150–153	reckless driving, 13
from a rotation matrix, 153	recognizability, 582, 696
quotient topology, 136	reconfigurable robot, 330
radar map, 275–276	reconfigurable robot, 550 recontamination, 688
100ai map, 210 210	1000Huaiiiiiauioii, 000

reduced visibility graph, see shortest-patl	a conditional Bayes', 453
roadmap	frequentist, 484
Reeds-Shepp car, 725, 794, 800, 845	RLG, see random loop generator
Reeds-Shepp curves, 884–886	roadmap
refinement of a plan, 22, 841	directed, 315
reflex vertex, 261	general requirements, 250–251
region of inevitable collision, 796–797	maximum-clearance, see maximum-
regret, 450–451, 462	clearance roadmap
regret matrix, 450, 451	sampling-based, see sampling-based
reinforcement learning, 527–535	roadmap
evaluating a plan, 530–534	shortest-path, see shortest-path roadmap
general framework, 528–530	Robbins-Monro algorithm, see stochas-
terminology, 528	tic iterative algorithm
reinforcement planning, see reinforcemen	t robot displacement metric, 190
learning	robot-robot collisions, 319
relative value iteration, 527	Rock-Paper-Scissors, 490, 493
repulsive vertex, 404	roll rotation, 98
reroute path, 646	rolling a ball, 733–734
resolution, 201	rotation
resolution completeness, 186, 201, 224,	2D, 95–97
325,805,831,836	3D with quaternions, 150–152
under differential constraints, 805–	3D with yaw-pitch-roll, 98–100
808	RRT, see rapidly exploring dense tree
resultant	Rubik's cube, 4, 5, 17, 30
force, 754	Runge-Kutta, see numerical integration,
moment, 754	Runge-Kutta, 424 Russell and Norvig, 27
retraction method, see maximum-clearan	ce russen and worvig, 27
roadmap	saddle point, see sequential game, sad-
reverse-time system simulation, 816	dle point, and zero-sum game,
revolute joint, 100, 101, 103, 105–108,	saddle point
$113,\ 114,\ 121,\ 124$	sample point of a cell, 255
reward, 528	sample sequence, 195
reward function, 439	sample set, 195
reward functional, 528	sample space (of a probability space),
reward space, 480	442
Riemannian manifold, 766	sampling-based neighborhood graph, 416
Riemannian metric, 810–811	sampling-based planning
Riemannian tensor, 810	for closed chains, 340–347
rigid-body dynamics, see dynamics, of a	philosophy, 185
rigid body	time-varying, 314–315
rigid-body transformations, see transfor-	under differential constraints, 810–
mations, rigid body	837
Rimon, 375, 410	with feedback, 412–429, 837–841
risk	sampling-based roadmap

ϵ -goodness, 240	sensor feedback, 581
analysis, 240–241	sensor mapping, 561, 591
basic method, 237–241	sensor observation, 560
boundary sampling, 243	sensor-based planning, see planning un-
bridge-test sampling, 243–244	der sensing uncertainty
Guassian sampling, 243	sensorless manipulation, 701
medial-axis sampling, 244	sensorless planning, 582–585, 612–614
preprocessing phase, 238–239	sensors
query phase, 240	continuous, 598–605
vertex enhancement, 242–243	discrete, $561-564$
visibility roadmap, 241–242	sequential game, 536–551
sampling-based roadmaps, 237–244	against nature, see game against na-
under differential constraints, 837	ture, sequential
Sard's Theorem, 411	information space of, 619–627
SB, see strong backprojection	Markov assumption, 496–497
scalarization, 364	more than two players, 550–551
scaling an object, 121	on state spaces, 544–551
screw joint, 105	saddle point, 542–544, 546, 619, 621–
screw transformation, 106	623, 626
sealing cracks, 7	zero-sum with nature, 549–550
search algorithms, 318	shadow component, 674
adaptation to continuous spaces, 220-	
224	shearing transformation, 121
under differential constraints, 818–	shooting methods, 856
820, 828–830	shortest-path functional, 764
unified view, 41–43	shortest-path roadmap, 261–264, 679
see also backward search	SICK LMS-200, 604
see also bidirectional search	sigma algebra, 192
see also forward search	sign assignment, 284
search graph, 41, 217, 818	sign sensor, 562
searching an environment, 657	sign-invariant region, 284
second-order controllable systems, 919	silhouette curves, 293, 296
second-order differential drive, 744 second-order unicycle, 743	silhouette method, see Canny's roadmap algorithm
section (of a cylinder), 290	simple polygon, 90
sector (of a cylinder), 290	simple-car model, 722–726
security plan, 539–541, 546	two-car game, 783
security strategy, 461	with nature, 781
randomized, 465	simple-unicycle model, 729–730
selective sensor, 562	simplicial complex, 265–268
semi-algebraic decomposition, 284	simply connected space, 141
semi-algebraic model, 87–89	Simpson paradox, 482
semi-algebraic set, 87	simulation-based dynamic programming,
sensing history, 566	see reinforcement learning

simulation-based methods, 528 simulation-based planning, see reinforce-	spanning-tree covering, 355–357 spatial constraints, 351
ment learning	special Euclidean group, 147–148, 154
simultaneous localization and mapping,	special orthogonal group, 146
see SLAM, 656	speedometer, 601
single query, 186, 217	spherical coordinates, 397
single shooting, 857	spherical joint, 105, 107, 113
singular 0-simplex, 267	spherical linear interpolation, 189
singular 1-simplex, 266	spine curve, 92
singular k -simplex, 267	spiral search, 673
singular arcs, 878	squeeze function, 702
singular complex, 265–267	squeezing parts, 701–704
singular distribution, 895	SSM, see swath-point selection method
singular matrix, 295	stability of a system, 862–866
singular point of a distribution, 895	asymptotic, see asymptotic stability
singular simplex, 266	Lyapunov, see Lyapunov stability
singular value decomposition (SVD), 516	time-varying case, 864
situation calculus, 69	uniform, 863
skew symmetry, 904, 907	stable configuration space, 334
SLAM, 655–684	stage-dependent plan, 505
probabilistic, 679–684	standard grid, 203
sliding-mode control, 389	star algorithm, 159–161
sliding-tile puzzle, 4, 5, 30	star-shaped regions, 411
small-time local controllability, 722, 726,	state estimation, 572–573
845, 868–870, 883, 886, 888, 892,	state history, 400
903, 908–910, 921	state mapping, 590
smooth differential drive, 744	state space, 28
smooth distribution, 895	state trajectory, 372, 400, 788
smooth function, 385	state transition equation, 28, 29, 737,
smooth manifold, 134, 390–398, 895	738
\mathbb{RP}^n , 394–395	state transition function, 28, 29
\mathbb{R}^n , 393	state transition graph, 29
\mathbb{S}^n , 393–394	state transition matrix, 502
Riemannian, 810–811	state-nature mapping, 590, 591
smooth structure, 393	state-sensor mapping, 591
smoothness of a function, 385	state-space discretization, 828–832
Sobol sequence, 208	stationary cost-to-go function, 51, 511,
Sod's Law, 448	512, 514
Sokoban, 301	stationary differential equations, 387
solid representation, 81	statistical decision theory, 455
solution in the sense of Filipov, 388	steering methods, 817, 910–922
solution trajectory, 387, 398	piecewise-constant actions, 910–916
span of vector fields, 895	sinusoidal action trajectories, 917–
spanning tree, 355	920

steering problem, 792	tem theory
Stentz's algorithm, 362, 662–667	nonlinear, see nonlinear system
stereographic projection, 293, 394	simulator, 813–816
sticking, 693, 697, 699, 700	see also differential models
STLC, see small-time local controllabil-	system vector fields, 891
ity	systematic search, 32–33
stochastic control theory, see game agains	
nature, sequential, 495	tangent bundle, 384, 738, 895
stochastic differential equation, 781	tangent point, 854
stochastic fractal, 231	tangent space, 384, 390, 396
stochastic iterative algorithm, 533, 534	on a manifold, 395–398
· · · · · · · · · · · · · · · · · · ·	TangentBug, 670
stochastic shortest-path problem, 556	Tarski sentence, 282
strange topology, 131	Tarski-Seidenberg Theorem, 286
strategy, 452	Taylor series, 872, 873, 898, 899
STRIPS, 27, 58–63	TD, see temporal difference
strong backprojection, 504, 696	team theory, 626
structure problem, 353	temporal difference, 531–534
sub-Riemannian metric, 811	temporal logic, 364
subgroup, 146	termination action, 51, 568
subjective probabilities, 485	THC, 17
subspace topology, 130–131	theory of computation, 298
sufficient information mapping, 573	time scaling, 317, 792
sufficient statistic, 573	time-invariant, 741
Sukharev grid, 203	time-limited reachable set, 799
superquadric, 92	time-monotonic path, 313, 315–317
supremum, 201, 439	time-optimal trajectory planning, 853–
Sussmann and Tang, 887	855
swath, 229, 231, 803, 804, 809, 818	time-varying motion planning, 311–318
swath-point selection method, 231, 818	algebraic obstacle motion, 315
Swiss cheese, 141	bounded speed, 315–316
switching boundary, 388	unbounded speed, 312–315
switching time, 878	timing function, 317
symmetric systems, 793–794	tire skidding, 761
symmetric Turing machine, 300	Tit-for-Tat, 490
symmetry class, 644	topological complexity, 429
symplectic manifold, 778	topological graph, 132–134, 803
system, 715, 793	topological manifold, see manifold
determining whether controllable, 903	3-topological property, 845, 909
910	topological space, 128–134
determining whether nonholonomic,	connected, 139, 140
892–903	identification, 136
distribution, 895	metrizable, 187
linear, see linear system	path connected, 139
nonholonomic, see nonholonomic sys-	simply connected, 141

topologist's sine curve, 139	trivial topology, 131
topology	Turing machine, 19, 299
manifold, see manifold	two-point boundary value problem, 788,
topological space, see topological space	ce 792, 798, 805, 810, 816–820, 823,
torque, 751, 753, 771	830-832, 834, 835, 837, 855-857,
torus, 137, 138, 143, 171, 172, 175	861, 862, 867, 910
total differential, 778, 779	Type A contact, see Type EV contact
tower exponentiation, 304	Type B contact, see Type VE contact
Towers of Hanoi, 368	Type EE contact, 164, 167
trailers, 730–731	Type EV contact, 161, 162, 164–166,
trajectory, 387	184
* * * * * * * * * * * * * * * * * * * *	Type FV contact, 163, 167
trajectory optimization, 855–857	Type VE contact, 161, 162, 164–166,
trajectory planning, 792	182, 184
path-constrained, 846–855	Type VF contact, 164, 167
transcription, 857	1 y pc v1 contact, 104, 107
transfer mode, 334	Udupa, 127
transfer path, 335	uncertainty
transformations	brief overview, 435–436
2D chain, 100–103	due to partial predictability, 435, 496-
2D rigid body, 94–97	535
3D chain, 103–112	due to sensing, 435, 559–627, 633–
3D rigid body, 97–100	704
general concepts, 92–94	underactuated system, 722, 793, 804, 827–
kinematic tree, 112–120	828
nonrigid, 120–122	unicycle, 729–730, 743–744
transit path, 335	uniform random, 198
transition configurations (mode change),	union-find algorithm, 224, 239
334	unique point, 662
translating a disc, 94	unit complex number, 149
trapezoidal decomposition, see vertical	unit quaternions, 150
decomposition	unknot, 350
trapped on a surface, 734–735	unsupervised classification, 455
Traveling Salesman Problem, 354	unvisited states, 33
tray tilting, 612–614, 701	upper envelope, 467
triangle fan, 91	upper value of a game, 461, 539, 546
triangle inequality, 187	utility function, 482–483
triangle model, 90–91	utility of money, 483
triangle strip, 91	utility theory, 477–483
triangular enumeration, 807	dome, checif, it. 100
triangulation, 250, 266, 268–269, 307,	vacuum cleaning, 354
404	value iteration, 45
tricycle, 725	backward, see backward value itera-
trim trajectory, 809	tion, 45–48
trivial operator, 66	convergence issues, 511–514
• ,	, , , , , , , , , , , , , , , , , , ,

forward, 48–50	warping a path, 140
relative, 527	wavefront, 357
with interpolation, 419–423	wavefront propagation, 378–379, 429
van der Corput sequence, 196–197, 204,	wavelet, 358
205, 207, 217, 238	way point, 406
variation of a function, 763	WB, see weak backprojection
variety, 168, 170–171	weak backprojection, 504, 552, 696, 697
for 2D chains, 171–176	weighted-region problem, 362
for general linkages, 176–180	Weiner process, 781
vector field, 381–390, 398, 719	Whitney's embedding theorem, 134, 136
equilibrium point, 862	with probability one, 196
normalized, 400	word (sequence of motion primitives),
over a cell complex, 402–404	881
piecewise-smooth, 388–390	world, 81, 745
vector space, 382–383	world frame, 94
\mathbb{R}^n over \mathbb{R} , 383	worst-case analysis, 448, 507, 570
of functions, 383	wrench (from mechanics), 754
velocity field, 386–387	vary rotation 00
velocity-tuning method, 317–318	yaw rotation, 98
vertex selection method, 217–220, 226–	zero-sum game, 459–468
228, 231	matrix representation of, 460
vertical decomposition, 253–258, 267–268,	randomized saddle point, 466–468
319	randomized value of, 466
3D, 270–273	regret in, 462
violation-free state, 796	saddle point, 462–464
virtual human, 11	value of, 462
VisBug, 670	
visibility graph, see shortest-path roadmay	p
visibility polygon, 648	
visibility region, 674	
visibility roadmap, 241	
visibility sensor, 604, 647	
visibility skeleton, 649	
visibility-based pursuit-evasion, 684–691	
a sequence of hard problems, 686	
complete algorithm, 687–690	
problem formulation, 684–687	
variations, 690–691 Voronoi diagram, 200	
<i>o</i> ,	
Voronoi region, 200, 208, 212–214, 618 Voronoi vertex, 202	
VSM, see vertex selection method	
volvi, oce vertex selection method	
wall clock, 605	
wall following, 662	